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Abstract9

There is strong interest globally amidst the current COVID-19 pandemic in tracing contacts of10

infectious patients using mobile technologies, both as a warning system to individuals and as a targeted11

intervention strategy for governments. Several governments, including India, have introduced mobile12

apps for this purpose, which give a warning when the individual’s phone establishes bluetooth contact13

with the phone of an infected person. We present a methodology to probabilistically evaluate risk of14

infection given the network of contacts that individuals are likely to encounter in real life. Instead of15

binary “infected” or “uninfected” statuses, an infection risk probability is maintained which can be16

efficiently calculated based on probabilities of recent contacts, and updated when a recent contact is17

diagnosed with a disease. We demonstrate on realistic networks that this method sharply outperforms18

a naive immediate-contact method even in an ideal circumstance that all infected persons are known to19

the naive method. We demonstrate robustness to missing contact information (such as when phones20

fail to make bluetooth contact or the app is not installed). We show, within our model, a strong21

flattening of the infectious peak when even a small fraction of cases are identified, tested and isolated.22

In the real world, where most known-infected persons are isolated or quarantined and where many23

individuals may not carry their mobiles in public, we believe the improvement offered by our method24

warrants consideration. Importantly, in view of widespread concerns on privacy and contact-tracing,25

our method relies mainly on direct contact data that can be stored locally on users’ phones, and uses26

limited communication via intermediary servers only upon testing, mitigating privacy concerns.27

Introduction28

The COVID-19 coronavirus pandemic, which has expanded from China in December 2019 to affect almost29

every country in the world by now (April 2020), has led to a strong interest in non-pharmacological30

interventions to curtail spread. Early efforts in China, Singapore, South Korea and other countries involved31

extensive testing as well as identification and isolation of contacts of infected individuals and mobile-based32

alerts [13]. Several governments have also experimented with mobile contact-tracing applications. At33

a basic level, these applications enable a mobile phone to communicate with other mobile phones via34

bluetooth, and warn the owner when contact has been made with an infected person. An example is35

India’s Aarogya Setu (“health bridge”) app 1. Previously, such apps were developed in China, Singapore,36

and South Korea [10], and are under development in countries including France [7], the USA [10], and the37

UK [12] and elsewhere. Privacy concerns have been raised globally, and privacy-sensitive protocols have38

been proposed [4]. Meanwhile Google and Apple have announced a partnership to develop contact-tracing39
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infrastructure for inclusion in their basic mobile software stacks, promising to respect privacy and security.40

[8]41

Unfortunately most current apps are closed-source with opaque mechanisms, but as far as is docu-42

mented by them, they rely on direct contacts with known infected individuals, and possibly on past direct43

contacts with individuals who subsequently became diagnosed as infected.44

Here we present a probabilistic framework to assess an infection risk based on risk factors of contacts,45

whether positive or not. In this scheme, every individual has a risk factor based on their contact history.46

We demonstrate via simulations that this method strongly outperforms a naive method based only on47

direct contacts. Given some epidemiological assumptions and approximations, our calculation is rigorous48

but can be performed locally on a mobile phone using only the owner’s risk factor and the risk factor of the49

contact. Contact history, too, can be stored on the mobile phone and need not be shared with a server.50

Only one crucial step, of updating risk factors of recent contacts based on subsequent diagnoses, may51

require the use of a server. This too may probably be made secure, but we do not discuss security issues52

here, only efficiency of identifying likely infected individuals (who could, for example, be asymptomatic53

but spreaders).54

Methods55

Risk factor evaluation56

We make the approximation that the person-to-person transmission probability is a constant per contact,57

pt. This parameter is related to the infection rate in the SEIR compartmental model, discussed in a later58

subsection.59

If individual A, who is uninfected, makes one contact with individual B, who is infected, then A gets60

a probability pt of being infected after that contact. But we can also consider the case when B has a61

probability pB of being infected; then the probability of A being infected after the contact is pBpt.62

The most general scenario is that neither A nor B were uninfected, but had previous probabilities pA63

and pB of being infected. Then A is now infected with a new probability p′A = 1−(1−pA)(1−pBpt). Note64

that the bracketed terms are the probabilities of being originally uninfected, and of remaining uninfected65

after the contact. Similarly, we update B’s probability too, to p′B = 1− (1− pB)(1− pApt). Note that if66

pB = 0 then pA is unchanged, while pB updates to pApt, as expected; and vice versa.67

We therefore propose the following algorithm to update individual probabilities, or risk factors, of68

being infected.69

1. Each individual has a unique ID (for example, mobile phone number).70

2. Each individual’s infection probability is initialized in some way based on prior knowledge and self-71

reporting. This could be done via a questionnaire upon installing the app. The vast majority will72

be initialized to zero.73

3. Each individual’s app maintains a list of ALL contacts in the past m days (m ≈ 14, estimated upper74

bound of the incubation time; contacts from earlier are unlikely to affect current infection status).75

With each contact is included a list of all meeting times with that contact. This is required for a76

thorough update of probabilities, as discussed below.77

4. Every time two individuals A and B are in proximity, their mobile apps exchange their infection78

statuses pA and pB . The update is made as above: p′A = 1 − (1 − pA)(1 − pBpt) and p′B =79

1− (1− pB)(1− pApt)80

5. Test update propagation: If person A on B’s contact list tests positive, then pA is updated from81

its previous value to 1. But since A was probably already infected during their contact (given the82

long incubation time of the virus), pB needs to be updated too, to p′B = 1− (1−pB) (1−pt)
(1−pApt)

(where83

pA in the denominator is the previous value for A, and the new value for A is 1). But now we need84

to update every C whom B met subsequent to meeting A (that is, B’s last meeting with C is more85

recent than B’s first meeting with A). The formula for this is p′C = 1− (1−pc)
(1−p′

Bpt)
(1−pBpt)

. And, again,86

every contact of C who was met subsequent to C’s first meeting with B, and so on. In our simulation87
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we accomplish this via a recursive function, avoiding cycling back to a previous contact by passing88

an “ignore list” of contacts in each function call. Additionally, if a contact was met multiple times89

in the relevant timeframe, an update is performed the same number of times, since each meeting90

carried a risk.91

6. Each individual A’s contacts older than m days drop off the contact list, but this does not change92

pA. That is, if B, who last met A more than m days ago, is diagnosed infected, this is unlikely to93

require updating pA.94

7. Individuals who are recovered are marked as as immune. They play no further part in our simulation.95

In the real world, some instances of re-infection within a short time frame have been noted ([5], and96

additional cases reported in news media).97

Simulation98

We simulate an agent-based model on a network, in which agents interact stochastically over time and99

are categorized as ”susceptible”, ”exposed”, ”infectious”, and ”recovered”. These are the categorizations100

of the compartmental SEIR model in epidemiology, discussed and compared in the next subsection. We101

implement the risk update algorithm on the same agent-based framework and compare the risk profile102

predicted by our algorithm with the actual infections of the agent-based simulations.103

We initialize a population of size N , whose individuals are nodes on a weighted network. The network104

represents all possible contacts in this population: a link indicates two people who may make a contact,105

and the weight of the link is the probability of their making a contact at a given time. We consider106

random networks with uniform degree distribution and uniform link weights, Barabàsi-Albert-structured107

networks, and networks with family structures and small-world features. Our results are consistent across108

all these structures. A key parameter of the network, used below, is the average number of contacts per109

node, defined as110

Nc =
1

N

N∑
i=1

∑
j∈neighbours of i

wij (1)

where wij is the weight of the link between i and j.111

Individuals are marked as susceptible (S), exposed (E—infected but not yet infectious), infectious (I)112

and recovered (R, assumed immune to future infection). The simulation is initialized with all individuals113

being uninfected (susceptible) except a small number (eg, 10 out of 10,000) who are infectious. With each114

individual is associated a probability, which is initialized to 1 for infectious individuals and 0 for others.115

In each pass of the simulation, which we call an “epoch”, every link on the graph is sampled once,116

and a contact is made with probability equal to the weight of the link. So links weighted 1 (such as117

family links) are always sampled, while other links may be rarely sampled. After each contact between a118

pair of individuals, if one is infectious and the other is susceptible, the other is marked ”exposed” with a119

probability pt. For contacts other than S-I, nothing is done.120

At the end of each epoch, each individual is sampled for their status. Exposed individuals become121

infectious with a probability pe and infectious individuals recover with a probability pr.122

In parallel with this, at each contact, the probability scores of individuals making contact are updated123

as described above in “Risk factor evaluation”. This is done for each sampled pair of contacts if at least124

one has a non-zero probability score.125

An example of a possible simulation is in figure 1.126

We also keep track of a “naive probability” for each individual, which consists simply of updating127

p← 1− (1− p)(1− pt) (2)

every time a known susceptible individual meets a known infected individual. We call this the “naive128

oracle” approach, since this algorithm does not consider contact with people who have a risk factor, only129

with truly infectious people; but knows the true infectious status of the contacted person. In the real130

world, this is known for only a fraction of infectious people.131

Thus, the parameters of the simulation are pt, pe and pr. However, these are in turn derived from other132

parameters as follows: R0 is the “basic reproduction number” (see next subsection); Md is the number of133
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Figure 1: An example of a possible simulation, with pt = 0.1. Numbers in ovals are probability values.
The ”infected” status values are not shown here but are updated stochastically in parallel with the
probabilities. (a) Network with one individual initially infected. (b)–(e) Red links indicate contacts, and
probabilities of respective nodes are updated. (f) A second individual is diagnosed infected (dark red) and
that individual’s probability value is changed to 1.0, and the chain of previous contacts is updated (green
links).
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epochs that constitute one day; de is the average exposure time in days (the average number of days to134

turn infectious); dr is the average recovery time in days. From these, we get pe = 1
Mdde

and pr = 1
Mddr

.135

Finally, pt is determined from R0 and Nc as in the next section (equation 9).136

SEIR epidemiological model137

The SEIR compartmental model in epidemiology, [16], without vital dynamics (i.e., without births and138

deaths in the population), is usually written as139

dS

dt
= −kiSI (3)

dE

dt
= kiSI − keE (4)

dI

dt
= keE − krI (5)

dR

dt
= krI. (6)

Here S is the number of susceptible individuals in the population, E is the number of individuals exposed140

to infection but not yet infectious, I is the number of infectious individuals, R is the number of recovered141

individuals. The rate of infection (per person) is ki, exposed individuals become infectious at rate ke, and142

the recovery rate is kr. These equations conserve the total population S + E + I + R. Within this model143

recovered individuals are permanently recovered (though deaths are not included here, individuals who144

die of the disease may also be counted in R since they are no longer infectious).145

We seek to estimate parameters of our simulation from epidemiological measurements in the real146

world. A key epidemiological parameter is R0, the “basic reproduction number” or the average number147

of individuals infected by any individual while infectious. It can be shown easily[16] that148

R0 = kiN/kr (7)

where N is the total population. This is valid for the SIR model as well as the SEIR model without births149

and deaths. This assumes a “well-mixed” system, but otherwise the same equation is commonly used with150

N being an “effective population”.151

In terms of individual contacts and contact rates, we can alternatively write152

R0 = pt · C (8)

where pt = transmission probability per contact as above, and C is the total number of contacts while153

the patient is infectious. C is equal to the rate of contact Rc (per epoch, say) times the average recovery154

time (also in epochs). So if the contact rate is 100 contacts per epoch, and the recovery time is 10 epochs,155

then C = 1000, and if R0 = 2, then pt = 0.002.156

The average recovery time is 1/kr, so comparing the two definitions of R0 (equations 7 and 8), we157

can identify kiN = rate of infection = rate of contacts × probability of infection per contact = Rcpt.158

Therefore, pt = R0kr/Rc. If, for example, R0 is empirically estimated as 2, the recovery time is taken to159

be 10 days, and the average rate of contact per day is 100, then we estimate pt as 0.002. More generally,160

we take the rate of contact per epoch to be exactly equal to the average number of contacts per link, Nc161

(equation 1). Then we have162

pt =
R0

NcMddr
=

R0pr
Nc

(9)

which we use in the network simulation.163

Gillespie simulations164

To validate the accuracy of our sampling simulation, we also simulate the spread of the infection using165

the Gillespie algorithm. At any given time the state of the system is fully specified by the state of each166

individual; for the ith individual, its state si ∈ {S (susceptible), E (exposed), I (infectious), R (recovered)}.167

Let NS(t), NE(t), NI(t), NR(t) be the number of individuals in each of these states at time t. Time is168
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again divided into epochs. At the beginning of each epoch the network links are sampled as above. Let169

Cij(t) = 1 denote that there is a contact between individuals i and j in the epoch within which time t170

falls; Cij(t) = 0 if there is no contact between these two in that epoch. Then the Gillespie algorithm is171

run until the time of the next epoch as follows:172

1. Assign the start time of the epoch to the variable t173

2. List all possible “events” that can occur which will change the state of the system: there will be174 ∑
{i|si=S}

∑
{j|sj=I} Cij infection events, NE exposed-becoming-infectious events, and NI recovery175

events possible, for a total of n events. For each of these, compute the rate or probability per unit176

time for that event to occur, denoted aj for event j, j ∈ {1, 2, . . . , n}.177

3. Let a0 =
∑n

j=1 aj . Let ∆t be a random number sampled from the exponential distribution with178

mean 1/a0.179

4. If t+ ∆t is larger than the time of the next epoch, set t equal to the time of the next epoch and end180

the Gillespie run, resample the network and run the Gillespie algorithm for the next epoch.181

5. Otherwise, update t to be equal to t + ∆t, and choose one event to occur at that time (event j is182

chosen with probability aj/a0). Update the state of each individual if the event has changed it, along183

with NS(t), NE(t), NI(t), NR(t) (for example, if individual i infects individual j, then sj(t) = E, NE184

is incremented and NS is decremented by one).185

6. Go to step 2.186

This process is repeated for as many epochs as desired, usually until the number of exposed and infected187

individuals has fallen to zero. This gives the distributions NS(t), NE(t), NI(t) and NR(t) as functions of188

time, for comparison with the network sampling simulation.189

Results190

Complete network: Comparison with well-mixed SEIR model191

Figure 2 (a) shows a simulation on 2000 nodes, each node connected to all others with weight 1.0. For this192

“fully connected” or “complete” network, the SEIR model, with parameters determined as in the figure193

caption, shows excellent agreement with our simulation. The unrealistic assumption here is that each194

member of the population meets each other member exactly once per epoch; we exhibit it to demonstrate195

the agreement with a well-mixed SEIR model, but do not explore this network further.196

Realistic network: Comparison with SEIR model and Gillespie simulation197

We construct a more realistic network as follows. We initialize a random network with family links, such198

that every individual belongs to a family of size 1, 2, 3, 4, or 5 (with relative probabilities 0.2, 0.3, 0.3, 0.1,199

0.1). Family networks are complete, i.e., all members are connected to all others with weight 1. Then, 1%200

of the individuals are randomly selected, and each is connected to 1000 other individuals, with weight 0.1.201

These are meant to indicate “spreaders”, that is, people such as shop attendants and receptionists who202

have a large number of daily contacts that vary every day. Further links are added via a modification of203

the Barabási-Albert (BA) algorithm[2], that is, each node is attached to a randomly selected other node204

with weight 0.1. In the BA algorithm the new node is selected from all other nodes with a probability205

proportional to their coordination numbers. For efficiency, we first select 1000 random other nodes, and206

then select from those using the BA method.207

Figure 2 (b) shows the result of simulation on this network over 1500 epochs (150 days). The SEIR208

simulation shown is with an effective population size of 4,000, which has no justification but offers a better209

fit compared to either the total population (10,000) or the average contact number (37). It is known that210

the rate of spread of an infection on a network depends on its structure and not just on the average contact211

number [17], so it is not surprising that the best choice of effective population is different from the average212

contact number. In comparison, a Gillespie simulation on the same network agrees very well.213

Figure 2 (c) shows a simulation on 100,000 nodes, with parameters as in the caption. The SEIR here214

is plotted for an effective population of 23,000, and again fits poorly while the Gillespie agrees well.215
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Figure 2: (a) A comparison of our network simulation on 2000 nodes, with every node connected to every
other node with weight 1.0, with the compartmental SEIR model. The parameters taken for the network
simulation were: R0 = 4.0, Md = 10, pe = 1/10, pr = 1/20, pt ≈ 1.0 × 10−5 (from equation 9). For the
SEIR integration, since all rates are small, we use ke = pe/Md = 0.01, kr = pr/Md = 0.005, and ki = pi.
The simulation over 2000 epochs (200 days) agrees very well with the SEIR solution. (b) Simulation on
a 10000-node network that includes family units (size 1–5; link weight 1), spreaders (1% of total, 1000
links each, link weight 0.1 each) and links added via the Barabási-Albert method (link each node to a
random new node with probability proportional to current coordination number of new node; link weight
0.1). This network has 183,599 links. We used Md = 10 epochs. The average contact of each node is
3.77/epoch, ie 37/day. Parameters were: R0 = 3, de = 5 days (5 epochs), dr = 15 days( 150 epochs),
pt = 0.0053 (calculated from above). The simulation over 1500 epochs (150 days) agrees well with an
independently implemented Gillespie simulation, but disagrees with the SEIR prediction. Shown is SEIR
for effective population size Nc = 4000, which gives the best fit but is hard to justify. (c) Simulation on
a 100,000 node network with 1,948,709 links, layered similarly to the network in (b), except that the BA
links have weight 0.05, with the same parameters except pt = 0.0069 (calculated). The SEIR plotted is
for effective population 23,000.

Growth of probabilities216

While the object of this exercise is not to predict overall numbers in the population, but to identify in-217

dividuals most at risk, it is of interest to see how this probability varies with the growth in infectious218

individuals. Figure 3 (left) plots the ”total probability” (the sum over all individuals of individual prob-219

abilities, which would crudely be the expected number of infected individuals), as well as the number of220

individuals with p exceeding 0.5, 0.6, 0.7, 0.8, 0.9. The total grows much faster than the epidemic, as do221

each of the fractional curves, but the latter start their growths at different times that roughly track the222

growth of infectious cases.223

Figure 3 (right) does the same for the naive probability. Here the total probability tracks the infectious224

total more closely, but the fractional curves appear to increase at roughly the same epoch. This perhaps225

gives some intuition for the performance of our method compared to the naive method as measured by226

positive rate vs false positive rate, or precision vs recall, discussed below.227

Notably, at this time we have no “recovery” for probabilities, other than the testing-and-resetting228

mechanism discussed further below, not used in this figure. The methodology is expected to be most229

useful in early stages of an epidemic.230

Effectiveness of probabilistic prediction compared to naive methods231

On the network exhibited in Figure 2 (c), we compare the predictions of our probabilistic method and232

the ”naive oracle” method at epochs 200, 250 and 300 (representing 1815, 6479 and 14126 infections233

respectively out of 100,000). Subfigures 4 (a), (b), (c) show receiver operating characteristic (ROC)234

curves, and subfigures (d), (e), (f) show precision-recall curves (PRC). Also shown is the result for a235

random assignment of probability in (0, 1) for each individual. In all cases probabilistic method clearly236

outperforms the naive oracle, even though the oracle has the strong advantage of knowing whether an237

individual in an encounter is truly infected or not. These are plotted by calculating true positive rates (also238

called recall), false positive rates, and precision varying the threshold p used to predict an individual’s239
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Figure 3: (left) The “total probability” (p summed over all 100,000 individuals) as well as the fraction of
individuals over 0.5, 0.6, 0.7, 0.8, 0.9 in probability. (right) Similar plot for the naive probability.

infective state. A true positive is an infected patient who is predicted to be infected (p above threshold); a240

false positive is an uninfected patient predicted infected; a true negative is an uninfected patient predicted241

uninfected; a false negative is an infected patient predicted uninfected. If the total numbers of these are242

respectively TP , TN , FP and FN then243

True positive rate ≡ Recall =
TP

TP + FN

False positive rate =
FP

FP + TN

Precision =
TP

TP + FP

So, at all epochs shown, the probabilistic method has a TPR of about 67% at a FPR of 50%; the naive244

oracle performs at less than 50% TPR at 50% FPR in all cases, and its performance grows worse at later245

epochs (as the infection spreads.) Since suspected individuals will be tested via accurate RT-PCR tests,246

we feel this FPR rate is acceptable, especially given the effectiveness of a testing+isolation strategy that247

tests even a small fraction of risky individuals (next section)248

Effectiveness of testing and isolation of patients249

The naive oracle above is assumed to know the status of every covid-19 positive patient. Also, we update250

naive probabilities only on contact between infectious and uninfected patients.251

For a more realistic comparison with the real world operation of these methods, we can simulate ”test-252

ing” of patients, after which they are marked ”tested positive” (known infectious) or negative (susceptible).253

We implement testing at each epoch by selecting a predetermined fraction of all individuals with254

a high probability to be tested; the test simply looks at their true infected status. If truly infected,255

they are marked ”tested positive”, their probabilities and naive probabilities are set to 1, and non-naive256

probability updates are propagated to their contacts (as in figure 1 (f)). If they test negative, they are257

marked susceptible, and their probabilities are set to zero and their contact updates propagated.258

We modify the naive probability tracing to only consider contacts with known-infectious (tested) cases,259

and to update as in equation (2) for each such contact (regardless of the status of the contacter.) The260

sophisticated tracing goes on as before, but is aware of known-infectious contacts because their probabilities261

are set to 1 (but does not deal with them in any special way).262

The results are shown in figure 5, for a test threshold of p = 0.9 and rates of 5% and 1% of above-263

threshold cases tested. Interestingly, it appears that this non-oracular naive method is only able to achieve264

a very small recall (TPR) regardless of precision. Also, overall performance of the probabilistic method is265

reduced in the presence of testing, perhaps because probabilities after negative tests are being set to zero266

even though they could be in risky populations and liable to be infected.267
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Figure 4: (a), (b), (c): ROC curves for our probabilistic prediction of infections, a random allocation of
probabilities, and the naive oracle method, at epochs 200, 250 and 300 on the network in figure 2 (c). (d),
(e), (f): Precision recall curves at the same epochs.

We can also isolate tested-positive patients, by weakening their links to all their contacts. Figure 6 (a)268

shows the effect of this, for a testing threshold of 0.8 (individuals whose probability exceeds 0.8 are tested),269

for testing percentages of 10% and 20% of risky individuals, and with a weakening of links to 10% of their270

previous value. (For a population of 100,000, at epoch 300 in our simulation, about 2,200 individuals have271

p > 0.8, so 10% testing here means testing 220/100,000 individuals, or 0.2% of the full population.) This272

suggests that a test rate of even 10% has a very strong effect in flattening the curve. However, though273

this suggests the effectiveness of testing and isolation (which has been widely noted [1, 14, 3] and is being274

practised by most countries), we caution against drawing quantitative conclusions from our model.275

Lossy data276

With mobile tracking, it is likely that several individuals will not be carrying their mobile or will not have277

the app installed, therefore the probabilistic updates will not occur. Figure 6 (b) shows the effect of such278

missing contacts, implemented by randomly ignoring updates with a given probability. This appears to279

have negligible effect for up to 60% loss in contacting (40% successfully recorded contacts).280

Discussion281

Several authors have discussed the possibility of tracing contacts of recently infected patients via mobile282

phones, with the goal of isolating them. This is argued[9, 3] to be an effective way to control the outbreak283

and build “digital herd immunity”. We demonstrate in an agent-based simulation on a network that our284

method is a better predictor, based on TPR/FPR or precision/recall, of truly infected patients compared285

to a naive first-contact-based prediction, even in an ideal case where the naive method is an “oracle”286

that always knows the true status of the contact. Our results are robust to loss in detection of contacts,287

which is expected to be significant in real life. Our simulations show that testing only the most probable288

individuals (p > 0.8) and isolating them (reducing link strength by a factor of 10) strongly flattens the289

curve of infection. Though we have tried to make our network structure realistic, the real world has several290

complications over a simulation; nevertheless we expect these results to hold qualitatively.291
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Figure 5: ROC and Precision-Recall curves with testing for a non-oracle naive method, which is aware
only of tested-positive individuals, and the probabilistic method.

(a)                                                                                              (b)

Figure 6: Effect of testing, and of missing contacts
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Several authors have also raised privacy concerns [11, 6] over mobile contact tracing, and proposed292

privacy protocols to handle this [4]. We do not directly address privacy concerns here. However, our293

method requires most contact information to be stored only on the users’ own mobile phone. This294

information only consists of the contact’s mobile number, number of meetings, and times of first meeting295

and last meeting. Infection probability information is exchanged via bluetooth at the time of contact,296

but is used only to update one’s own probability and need not be stored. Only one step, the “update297

contacts” procedure that propagates the change in diagnosis of an individual to the individual’s contacts,298

and the contacts’ contacts, recursively, requires the means for one mobile phone to communicate to another299

post-contact. This likely requires the use of an intermediary server, but this use is limited and privacy300

concerns can be mitigated by using an encrypted protocol and deleting communication request data once301

the request is carried out.302

Overall, our probabilistic contact tracing framework appears to outperform the naive method signif-303

icantly, whether implemented as an “oracle” that knows all truly infected individuals, or implemented304

with a testing framework to recognize only positively-tested individuals. While it can be used to identify305

immediate contacts of a tested individual, it can go further to identify at-risk individuals in the wider306

population, while also substantially taking care of privacy concerns.307

While we focus on the SEIR disease model, more complex models featuring asymptotic individu-308

als, different levels of symptomatic individuals, limited recovery period (recovered individuals becoming309

susceptible after a time), etc, can be considered and are being considered for COVID-19 [15] 2. Our sim-310

ulation framework can be modified easily for such cases too, as well as for bigger and more geographically311

structured networks. We plan to explore such complexities in future work.312
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